Natural Allies: Great Lakes Water Quality

Scroll this

Environmental and energy issues have always been central to US-Canada relations and diplomacy – that is the key point of my new book Natural Allies: Environment, Energy, and the History of US-Canada Relations. Going back to the nineteenth century, no two nations have exchanged natural resources, produced transborder environmental agreements, or cooperatively altered ecosystems on the same scale as the United States and Canada. In this post, the third in a series originally published by FLOW that draws from Natural Allies to highlight transborder issues in the Great Lakes-St. Lawrence basin, I address pollution and water quality.

Pollution across the Canada-US water border, particularly from Detroit, had been one of the main reasons for including a clause about pollution in the 1909 Boundary Waters Treaty. Shortly after its creation, the International Joint Commission (IJC) addressed transboundary water pollution in the Niagara, Detroit, and St. Clair Rivers. The IJC recommended sewage treatment and water purification for human waste. But both nations mostly ignored the commission’s advice about restricting border pollution. Canada and the US did ink a treaty in 1920 about pollution, but it was not implemented. 

By the early Cold War period, pollution in the Great Lakes basin was even worse. The two countries asked the IJC to investigate the state of the Great Lakes connecting channels. They found bacteria levels three to four times higher than during their 1912 investigation. And there was even more industrial waste than human waste entering the waters: two billion gallons of effluent daily versus 750 million gallons. 

By the 1960s, Lake Erie was widely considered “dead.” That was the result of excessive eutrophication – the process in which nutrient loading causes too much algae growth, and the algae in turn uses up the oxygen in the water when it decomposes. Cleveland’s grossly polluted Cuyahoga River repeatedly caught fire in the 1950s and 1960s, including the most famous blaze in 1969. But other rivers throughout the Great Lakes basin, such as the Rouge, Buffalo, and Chicago, also went aflame. 

In 1964, Canada and the United States formally asked the IJC to study pollution in the lower Great Lakes. The IJC issued three reports that provided scientific evidence attesting to the seriousness of the situation. However, Ontario and the various American governments were not willing to consider such measures at that time, and the report was mostly ignored. One impediment was Canada’s position that the 1909 BWT gave each country the right to contribute pollution up to half of the “assimilative capacity” of the waters, regardless of population.

The commission’s final report in 1970 concluded that municipal and industrial pollution was occurring on both sides of the boundary to the injury of health and property on the other side. Now the two countries were more willing to take action. Based on the IJC’s recommendations, the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972. This GLWQA only applied to the two lowest Great Lakes, Erie and Ontario, and the international section of the St. Lawrence River. The GLWQA committed each nation to develop common water quality objectives and regulatory standards for several pollutants, and to create and implement their own national programs to achieve these goals. 

Richard NIXON Visit to Canada U.S.A. Politician (Nixon and Trudeau chat during the brief ceremony in the West Block of the Parliament Buildings prior to the signing of the Great Lakes Water Quality Agreement. U.S. environment official Russell Train is in the middle.)

The focus was point source pollution, chiefly excess nutrient loading from phosphorous and nitrogen. The main strategy to reduce the nutrient inflow involved improving municipal sewage treatment. Between 1972 and 1978, about USD $10 billion was spent on upgrades to water and sewage treatment. The bulk of this was through the US Clean Water Act. In both countries, the federal governments subsidized actions and regulations taken at the provincial and state levels.

Total phosphorus concentrations for Lake Erie soon declined, and the effect on water quality was readily apparent. Nevertheless, all the phosphorous loading targets were not being met. Moreover, the 1972 GLWQA did not apply to the three upper Great Lakes and it did not cover nonpoint sources of pollution nor hazardous toxics.

In 1978, the two governments replaced the 1972 agreement with a new GLWQA. The 1978 GLWQA built upon the foundation established in the earlier agreement and incorporated new scientific information. It encompassed all the Great Lakes. Importantly, it shifted the focus from conventional pollutants, such as phosphorus and bacteria, to toxic and hazardous polluting substances. 

Through the 1978 Agreement, the two countries adopted a policy that the discharge of all persistent toxic substances be “virtually eliminated.” Timelines were established for municipal and industrial pollution abatement and control programs. The 1978 agreement also employed a broader ecosystems approach to basin management, recognizing that water, air, and land pollution were interlinked. 

The 1978 agreement has remained in place up to the present. Rather than a new agreement, changes and additions were made to the 1978 GLWQA. In 1987 an annex was added to the GLWQA. It created Areas of Concern (AOCs) for the most polluted parts of the basin, with Remedial Action Plans (RAPs) to clean them up. In 2012, a protocol was added

However, both the 1972 and 1978 GLWQAs were nonbinding – that is, they did not have the teeth of a formal treaty or diplomatic agreement. Rather, the GLWQA was a “standing reference” under the Boundary Waters Treaty. Since the GLWQA was a good faith agreement, it relied on the two countries to live up to its commitments. By the 1980s, however, they were already failing to do so. Most industries refused to appreciably curtail their discharges, and regulators were wary of cracking down on them. North American governments were often captured by the interests they were supposed to regulate, or let these industries police themselves. Unsurprisingly, the results were better for corporate bottom lines than for the lake ecosystem and public health.

The Great Lakes Water Quality Agreement was a watershed moment for environmental protection and became an international model for regulating transboundary pollution. Yet, a year after the 50th anniversary of the first GLWQA, the Great Lakes are arguably more degraded today than they were in the 1960s. Fueled by climate change, many old problems – like toxic algae – are returning, while new problems are appearing: microplastics, agricultural runoff, and toxics such as PFAS.

Feature Image: Great Lakes Areas of Concern
The following two tabs change content below.
Daniel is an Associate Professor in the School of Environment, Geography, and Sustainability at Western Michigan University. He is an editor for The Otter-La loutre and is part of the NiCHE executive. A transnational environmental historian who focuses on Canadian-American border waters and energy issues, particularly in the Great Lakes-St. Lawrence basin, Daniel is the author or co-editor of six books on topics such as the St. Lawrence Seaway, border waters, IJC, and Niagara Falls. His book "Natural Allies: Environment, Energy, and the History of US-Canada Relations" was published in summer 2023. His newest book is "The Lives of Lake Ontario: An Environmental History" (September 2024). He is now working on a book about Lake Michigan and hopes to eventually write a book on the environmental history of the Great Lakes. Website: https://danielmacfarlane.wordpress.com Twitter: @Danny__Mac__

NiCHE encourages comments and constructive discussion of our articles. We reserve the right to delete comments that fail to meet our guidelines including comments under aliases, or that contain spam, harassment, or attacks on an individual.