Model Environments: Engineering the Niagara and St. Lawrence Megaprojects

Scroll this

Something about models fascinates people. I’m not talking about the “super” kind that strut on catwalks. I’m referring to the three-dimensional representation variety. Models are a staple of the heritage and museum industry – I always liked the dike and abattoir Acadian landscape model at the predecessor to the Canadian Museum of History, or the Plains of Abraham model at the Canadian War Museum. But models aren’t just used to represent history; they are also used to make history.

In the 1950s Canada and the United States cooperated to build two transborder megaprojects: the St. Lawrence Seaway and Power Project, and the Niagara Falls remedial works.  I’ve written about both of them for The Otter~La loutre multiple times in the past, so I’m not going to rehash the details here. Instead, I’d like to focus on the high-precision scale models used in the construction of both of these massive water control endeavors since I think they are, for lack of a more sophisticated academic term, pretty cool.

The ideal way to conceptually approach these models and megaprojects is through the lens of envirotech, which combines the fields of the history of technology and environmental history. Envirotechnical analysis reveals the ways that models were integral to the creation of hybrid enviro-technical systems that blend the natural and the artificial, highlighting the engineering and modeling processes as a means of talking about conceptions of modernity, progress, technology, and environments in early Cold War North America.

American-Falls-model
Ontario Hydro model of the American Falls, the smaller of the two waterfalls at Niagara Falls. Note that this model is from the 1960s, but I couldn’t resist using it because of the individual standing on it. Courtesy of the International Joint Commission.

The Canada-US Niagara River Diversion Treaty of 1950 called for remedial works and physical reconfigurations – what I like to call “disguised design” – that would maintain the beauty of Niagara Falls while allowing ½ to ¾ of the water of the Niagara River to be diverted around the falls for hydro-electric production, depending on the time of day. Scale models were the primary means by which the form and location of the Niagara works were chosen. The Niagara models replicated long stretches of the river and falls in minute detail: the topography, the shoreline, the channels and contours, the cataracts and rapids, and the turbulence and velocity of the currents. This appears to the be the first time in Canada that models were used as the basis for a civil engineering project, though I’d like to get some more definitive confirmation of that.

Two models were used for Niagara planning, one by each country. The American model was built by the US Army Corps of Engineers at the Waterways Experiment Station at Vicksburg, Mississippi. This station was built in 1928 to model the Mississippi River (and a recent piece on the Mississippi River models partially inspired this post). Canada’s Niagara model was built by Ontario Hydro at its Islington station, on Kipling Avenue in Toronto. The Ontario model depicted 5 miles of the river, from the tip of Grand Island to Rainbow Bridge, including the falls. Encased within concrete walls, it was 95 feet long, 37 feet wide, and approximately 4 feet high, built on a horizontal scale of 250:1 and a 50:1 vertical scale. The Vicksburg model included the upper reaches of the Niagara River, and since it included more territory it was on a smaller scale (360:1 horizontal; 60:1 vertical) but was 260 feet long.

Planners were enamored with the models and believed them to be indispensable for determining the future fluvial geomorphology of the two iconic waterscapes. Moreover, it was cost-effective: Ontario Hydro bragged that using models saved about $5 million. Both nations contended that the use of separate models increased accuracy due to the “uniqueness and complexity” of the situation. But politics and pride were also motivations for using separate models: each country wanted a piece of the action, and thought their experts and means were more reliable.

SAM_0768
Ontario Hydro Niagara model.
SAM_0953_2
USACE Niagara model at Vicksburg station.

While construction of the Niagara remedial works, based on the models, was underway, an agreement for the transnational construction of the St. Lawrence Seaway and Power Project was finally inked. Most of the governmental agencies responsible for Niagara were also involved with the St. Lawrence, and many of the Niagara engineers were moved to the St. Lawrence models. Ontario Hydro built 9 power project models, again at Islington. The federal St. Lawrence Seaway Authority built its own models for the seaway, in both Ottawa and Montreal. The National Research Council (NRC) in Ottawa created a model of a lock and another of the International Rapids section. The United States undertook hydraulic model studies in Vicksburg, and also in Minneapolis, Minnesota.

11
NRC St. Lawrence model.

Modelling a longer stretch of the St. Lawrence system, and one that was to be converted into a lake-cum-reservoir, provided modeling challenges. As had been the case with Niagara, part of the problem was finding accurate information on which to base the construction of models. The engineers spent a great deal of time trying to find out what the “natural conditions” were, but internal documents reveal top officials admitting that they didn’t really know. Technocrats qualified their control of water levels with the vague phrase “as nearly as may be”; however, this imprecision was belied by public displays of confidence and authority.

StL-Vicksburg-model
Seaway model at USACE’s Vicksburg station.

The engineering process was beset by other miscalculations, assumptions, and compromises. The St. Lawrence and Niagara models often produced erroneous results. Sometimes this was the result of incorrect base knowledge, such as faulty gauge data, about the rivers. This hampered the “model verification” since that required comparing model performance against known conditions. While the engineers came to personally know the river environments in great detail, embodied and experiential local knowledge was ignored and dismissed. Technical problems were also exacerbated by political rivalries: there were many instances of Canadian engineers complaining about the inadequacy of American tests and models, and vice versa.

When extrapolated onto a larger scale, seemingly slight model mistakes could have significant ramifications. An internal Ontario Hydro engineering report concluded that: “on the basis of Niagara tests which Hydro itself has run on models of its own design, Hydro Engineers have been led to conclude that the models being used by the Board, which were designed to a distorted scale, produce results which are quite different from those run on true scale models.” During construction of the Seaway “it was discovered that, due to an oversight in establishing … conditions, an area comprising approximately 1½ blocks was left in the lower channel.”

The engineering plans and models for the two megaprojects were indicative of a faith in progress and technology, exemplified by the models the planners relied upon; but the evolution of these plans equally reveal the contradictions and limits to this faith. Even though the engineers were repeatedly made aware of their fallibility and the limits of their expertise, they continued to ignore the underlying flaws in their methods and maintained full trust in their models and technological expertise. At the same time, though the engineering process was messy and reactive, we shouldn’t forget that the projects did function as the engineers had planned in the long run.

I think it is fair to describe this modeling process as indicative of high modernism. The concept’s originator, James C. Scott, argues that truly (or “ultra”) high modernist projects can really only happen where authoritarian governments rule over weak civil societies. My point of departure is that the St. Lawrence and Niagara projects do meet the major criteria of high modernist projects, aside of the authoritarian setting, and aren’t thwarted, though they are modified, by the exigencies of liberal capitalist democracies. Thus we see what I have previously called negotiated high modernism: lacking the autocratic authority to simply impose schemes without some measure of approval from civil society, the Canadian (and American) states had to repeatedly negotiate, adapt, and legitimize themselves – in relation to both the specific natural environments and the societies they aimed to control – in order to achieve their high modernist vision.

Though many of the models were made available to the public during the 1950s, and proved to be a very popular draw. While the fate of most of the Niagara and St. Lawrence models is unclear, the Corps of Engineers kept their Niagara model at the Waterways Experiment Station in Vicksburg intact and open to the public into the 21st century. Despite my pestering, I haven’t received any confirmation that the Niagara models are still in existence. There are rumours that the National Research Council’s St. Lawrence models might still be around, disassembled and boxed up in some government warehouse; government historians have been looking into the case for me, but so far no definitive proof has surfaced. Until they turn up, we will have to be satisfied with viewing the real deal – even if the Niagara and St. Lawrence waterscapes are, in certain respects, as much technological artifacts as the models.

The following two tabs change content below.
Daniel is an Associate Professor in the School of the Environment, Geography, and Sustainability at Western Michigan University. He is an editor for The Otter-La loutre and is part of the NiCHE executive. A transnational environmental historian who focuses on Canadian-American border waters and energy issues, particularly in the Great Lakes-St. Lawrence basin, Daniel is the author or co-editor of five books on topics such as the St. Lawrence Seaway, border waters, IJC, and Niagara Falls. His book "Natural Allies: Environment, Energy, and the History of US-Canada Relations" was published in summer 2023. His newest book, an environmental history of Lake Ontario, will be released in 2024. Website: https://danielmacfarlane.wordpress.com Twitter: @Danny__Mac__

10 Comments

Leave a Reply to Daniel MacfarlaneCancel reply